On the Properties of Preconditioners for Robust Linear Regression
نویسندگان
چکیده
In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A and preconditioners based on low-rank updates and or downdates of existing matrix factorizations. Numerical results are given to demonstrate the effectiveness of these preconditioners. keywords: Robust regression, Iteratively reweighted least squares, Newton’s method, Conjugate gradient least squares method, Preconditioner
منابع مشابه
Properties of Preconditioners for Robust Linear Regression
In this paper, we consider solving the robust linear regression problem by an inexact Newton method and an iteratively reweighted least squares method. We show that each of these methods can be combined with the preconditioned conjugate gradient least square algorithm to solve large, sparse systems of linear equations efficiently. We consider the constant preconditioner and preconditioners base...
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کامل